Answer
$\frac{2y^{2}\sqrt[3] {10}}{5}$
Work Step by Step
$\frac{\sqrt[3] {240y^{2}}}{5\sqrt[3] {3y^{-4}}}$
=$\frac{1}{5}\times \sqrt[3] \frac{240y^{2}}{3y^{-4}}$
=$\frac{1}{5}\times \sqrt[3] {80y^{2+4}}$
=$\frac{1}{5}\times \sqrt[3] {80y^{6}}$
=$\frac{1}{5}\times \sqrt[3] {8\times 10\times y^{6}}$
=$\frac{1}{5}\times \sqrt[3] {8\times y^{6}}\times \sqrt[3] {10}$
=$\frac{1}{5}\times 2\times y^{2}\times \sqrt[3] {10}$
=$\frac{2y^{2}\sqrt[3] {10}}{5}$