Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1183: 52

Answer

$(7.07\times 10^{-8})^{\circ}$

Work Step by Step

The vertical distance between $n^{th}$ interference minimum and the center of the interference pattern is given by $y_n=\frac{D}{d}(2n+1)\frac{\lambda}{2}$ ..................$(1)$ where $D$ is the distance between the slit and the viewing screen. $d$ is the slit separation. For second minimum $n=1$, then eq. $(1)$ becomes $y_2=\frac{3D\lambda}{2d}$ or, $\frac{y_2}{D}=\frac{3\lambda}{2d}$ ..................$(2)$ Let $\theta$ be the angle between the center of the pattern and the second minimum (to either side of the center). $\therefore\;\;\tan\theta=\frac{y_2}{D}$ ..................$(3)$ Substituting eq. $(2)$ in eq. $(3)$, we get $\tan\theta=\frac{3\lambda}{2d}$ or, $\theta=\tan^{-1}\Big(\frac{3\lambda}{2d}\Big)$ ..................$(4)$ Now the de Broglie wavelength of the proton is given by $\lambda=\frac{h}{P}$ ..................$(5)$ Each with a speed of $v=0.9900c$. To find momentum $P$, we have to consider relativistic momentum, which is given by $P=\gamma mv$, where $\gamma=\frac{1}{\sqrt {1-v^2/c^2}}$ Thus, eq. $(5)$ becomes, $\lambda=\frac{h}{\gamma mv}$ ..................$(5)$ Substituting $(5)$ in eq. $(4)$, we get, $\theta=\tan^{-1}\Big(\frac{3h}{2d\gamma mv}\Big)$ ..................$(6)$ For, $v=0.9900c$, $\gamma=\frac{1}{\sqrt {1-(0.99)^2}}=7.0888$ Substituting the given values in eq. $(6)$, we get $\theta=\tan^{-1}\Big(\frac{3\times 6.63 \times 10^{-34}}{2\times 4\times 10^{-9}\times 7.0888\times 1.67\times 10^{-27}\times 0.99\times3\times 10^{8}}\Big)$ $\theta= (7.07\times 10^{-8})^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.