Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1183: 37a

Answer

The energy of the backscattered photon is $~~41.8~keV$

Work Step by Step

We can find the original wavelength: $\lambda = \frac{hc}{E}$ $\lambda = \frac{(6.63\times 10^{-34}~J~s)(3.0\times 10^8~m/s)}{(50.0\times 10^3~eV)(1.6\times 10^{-19}~J/eV)}$ $\lambda = 2.486\times 10^{-11}~m$ We can find the wavelength shift $\Delta \lambda$: $\Delta \lambda = \frac{h}{mc}(1-cos~\phi)$ $\Delta \lambda = \frac{h}{mc}(1-cos~180^{\circ})$ $\Delta \lambda = \frac{2h}{mc}$ $\Delta \lambda = \frac{(2)(6.63\times 10^{-34}~J~s)}{(9.109\times 10^{-31}~kg)(3.0\times 10^8~m/s)}$ $\Delta \lambda = 4.85\times 10^{-12}~m$ We can find the fractional loss in energy: $frac = \frac{\Delta \lambda}{\lambda + \Delta \lambda}$ $frac = \frac{4.85\times 10^{-12}~m}{2.486\times 10^{-11}~m + 4.85\times 10^{-12}~m}$ $frac = 0.163$ We can find the energy of the backscattered photon: $E_f = E - 0.163~E$ $E_f = 0.837~E$ $E_f = (0.837)~(50.0~keV)$ $E_f = 41.8~keV$ The energy of the backscattered photon is $~~41.8~keV$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.