Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1183: 38

Answer

$K_{max}=\frac{E^2}{E+\frac{mc^2}{2}}$ $(proved)$ Please see in step by step work.

Work Step by Step

Let $E$ is the energy of the incident photon, $E^\prime$ is the energy of the scattered photon, and $K$ is the kinetic energy of the recoiling electron. According to conservation of energy, $E=E^\prime+K$ or, $K=E-E^\prime$ ...................$(1)$ According to quantum theory of light, $E=hf=\frac{ch}{\lambda}$ and $E^\prime=hf^\prime=\frac{ch}{\lambda^\prime}$ where the symbols have their usual meanings. Now, we need to find the fractional energy loss for photons that scatter from the electrons: $\text{frac}=\frac{\text{energy loss}}{\text{initial energy}}=\frac{E-E^\prime}{E}$ $\frac{E-E^\prime}{E}=\frac{\frac{ch}{\lambda}-\frac{ch}{\lambda^\prime}}{\frac{ch}{\lambda}}$ or, $\frac{E-E^\prime}{E}=\frac{\frac{1}{\lambda}-\frac{1}{\lambda^\prime}}{\frac{1}{\lambda}}$ or, $\frac{E-E^\prime}{E}=\frac{\lambda^\prime-\lambda}{\lambda^\prime}$ or, $\frac{E-E^\prime}{E}=\frac{\Delta\lambda}{\lambda+\Delta\lambda}$ where, $\Delta\lambda=\lambda^\prime-\lambda=\frac{h}{mc}(1-\cos\phi)$ is called the Compton wavelength. $\phi$ is the angle at which it is scattered from its initial direction of motion. $\therefore \frac{E-E^\prime}{E}=\frac{\frac{h}{mc}(1-\cos\phi)}{\frac{ch}{E}+\frac{h}{mc}(1-\cos\phi)}$ Using eq. $1$, we can write $\frac{K}{E}=\frac{\frac{h}{mc}(1-\cos\phi)}{\frac{ch}{E}+\frac{h}{mc}(1-\cos\phi)}$ For maximum kinetic energy ($K_{max}$), $\phi=180^{\circ}$ $\therefore \frac{K_{max}}{E}=\frac{\frac{h}{mc}(1-\cos180^{\circ})}{\frac{ch}{E}+\frac{h}{mc}(1-\cos180^{\circ})}$ or, $\frac{K_{max}}{E}=\frac{\frac{2h}{mc}}{\frac{ch}{E}+\frac{2h}{mc}}$ or, $\frac{K_{max}}{E}=\frac{\frac{2}{mc}}{\frac{mc^2+2E}{Emc}}$ or, $\frac{K_{max}}{E}=\frac{2E}{mc^2+2E}$ or, $K_{max}=\frac{E^2}{E+\frac{mc^2}{2}}$ $(proved)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.