Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1183: 41c

Answer

$\Delta E = -8.66\times 10^{-6}~eV$

Work Step by Step

In part (b) we found that $~~\frac{\Delta \lambda}{\lambda} = 4.11\times 10^{-6}$ We can find an expression for the new wavelength: $\lambda_f = \lambda+(4.11\times 10^{-6})~\lambda$ $\lambda_f = 1.00000411~\lambda$ We can find an expression for the new energy: $E_f = \frac{hc}{\lambda_f}$ $E_f = \frac{hc}{1.00000411~\lambda}$ $E_f = 0.99999589~\frac{hc}{\lambda}$ $E_f = 0.99999589~E$ We can find $\Delta E$: $\Delta E = E_f - E$ $\Delta E = 0.99999589~E - E$ $\Delta E = -0.00000411~E$ $\Delta E = (-0.00000411) \frac{hc}{\lambda}$ $\Delta E = (-0.00000411) ~\frac{(6.63\times 10^{-34}~J~s)(3.0\times 10^8~m/s)}{590\times 10^{-9}~m}$ $\Delta E = -1.38556\times 10^{-24}~J$ $\Delta E = (-1.38556\times 10^{-24}~J) (\frac{1~eV}{1.6\times 10^{-19}~J})$ $\Delta E = -8.66\times 10^{-6}~eV$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.