Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1183: 46

Answer

(a) $3.885\times 10^{-11}$ $m$ (b) $1.243\times 10^{-9}$ $m$ (c) $9.069\times 10^{-13}$ $m$

Work Step by Step

The de Broglie wavelength $(\lambda)$ is express by the formula, $\lambda=\frac{h}{p}$, ......................$(1)$ where $h$ is the Planck's constant and $p$ is the momentum of the moving particle.. (a) For electron, the relation between momentum $p$ and energy $E$ is $E=\frac{p^2}{2m}$ , where $m$ is the mass of the electron. Thus, $p=\sqrt {2mE}$ ......................$(2)$ Substituting eq. $2$ in eq. $1$, we get $\lambda=\frac{h}{\sqrt {2mE}}$ ......................$(3)$ Now for an electron having energy $1.00$ $keV$ $\lambda=\frac{6.63\times 10^{-34}}{\sqrt {2\times9.1\times 10^{-31}\times 1\times 10^3\times 1.6\times 10^{-19}}}$ or, $\lambda=3.885\times 10^{-11}$ $m$ (b) For photon, the relation between momentum $p$ and energy $E$ is $E=pc$ Thus, $p=\frac{E}{c}$ ......................$(4)$ Substituting eq. $4$ in eq. $1$, we get $\lambda=\frac{hc}{E}$ Now for a photon having energy $1.00$ $keV$ $\lambda=\frac{6.63\times 10^{-34}\times 3\times 10^{8}}{1\times 10^3\times 1.6\times 10^{-19}}$ $m$ or, $\lambda=1.243\times 10^{-9}$ $m$ (c) As neutron has finite mass, we can use eq. $3$ to calculate the de Broglie wavelength ($\lambda$) Now for a neutron having energy $1.00$ $keV$ $\lambda=\frac{6.63\times 10^{-34}}{\sqrt {2\times 1.67\times 10^{-27}\times 1\times 10^3\times 1.6\times 10^{-19}}}$ or, $\lambda=9.069\times 10^{-13}$ $m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.