Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1183: 33d

Answer

The change in photon energy is $~~-66~\%$

Work Step by Step

We can find the original wavelength of the photon: $\lambda = \frac{hc}{E}$ $\lambda = \frac{(6.63\times 10^{-34}~J~s)(3.0\times 10^8~m/s)}{(1.0\times 10^6~eV)(1.6\times 10^{-19}~J/eV)}$ $\lambda = 1.243\times 10^{-12}~m$ We can find the Compton shift $\Delta \lambda$: $\Delta \lambda = \frac{h}{mc}(1-cos~\phi)$ $\Delta \lambda = \frac{h}{mc}(1-cos~90^{\circ})$ $\Delta \lambda = \frac{h}{mc}$ $\Delta \lambda = \frac{6.63\times 10^{-34}~J~s}{(9.109\times 10^{-31}~kg)(3.0\times 10^8~m/s)}$ $\Delta \lambda = 2.43\times 10^{-12}~m$ We can find the fraction of energy loss: $frac = \frac{\Delta \lambda}{\lambda + \Delta \lambda}$ $frac = \frac{2.43\times 10^{-12}~m}{(1.243\times 10^{-12}~m) + (2.43\times 10^{-12}~m)}$ $frac = 0.66$ The change in photon energy is $~~-66~\%$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.