Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1183: 44b

Answer

$1.017$

Work Step by Step

According to the classical radiation law, $I_c=\frac{2\pi ckT}{\lambda^4}$ and according to the Planck’s radiation law, $I_p=\frac{2\pi c^2h}{\lambda^5}\frac{1}{e^{\frac{hc}{\lambda kT}}-1}$ Therefore, the ratio of $\frac{I_c}{I_p}$ is given by $\frac{I_c}{I_p}=\frac{\lambda kT}{hc}(e^{\frac{hc}{\lambda kT}}-1)$ Given, $T=2000$ $K$, $\lambda=200$ $\mu m$ $=200\times 10^{-6}$ $m$ $\therefore \lambda kT=200\times 10^{-6}\times 1.38\times 10^{-23}\times 2000$ $J.m$ or, $\lambda kT=5.52\times 10^{-24}$ $J.m$ and $hc=6.63\times 10^{-34}\times 3\times 10^{8}$ $J.m$ or, $hc=1.989\times 10^{-25}$ $J.m$ $\therefore \frac{\lambda kT}{hc}\approx 27.75$ and $\frac{hc}{\lambda kT}\approx 0.036$ Therefore, $\frac{I_c}{I_p}=27.75\times(e^{0.036}-1)\approx 1.017$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.