Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1183: 39

Answer

$\phi = 44.3^{\circ}$

Work Step by Step

We can find the original wavelength of the photon: $\lambda = \frac{hc}{E}$ $\lambda = \frac{(6.63\times 10^{-34}~J~s)(3.0\times 10^8~m/s)}{(200\times 10^3~eV)(1.6\times 10^{-19}~J/eV)}$ $\lambda = 6.2156\times 10^{-12}~m$ We can find $\Delta \lambda$: $\vert \Delta E \vert = \frac{\Delta \lambda}{\lambda+\Delta \lambda} = 0.10$ $\Delta \lambda = 0.10~(\lambda+\Delta \lambda)$ $0.90~\Delta \lambda = 0.10~\lambda$ $\Delta \lambda = \frac{\lambda}{9}$ $\Delta \lambda = \frac{6.2156\times 10^{-12}~m}{9}$ $\Delta \lambda = 6.906\times 10^{-13}~m$ We can find the required angle $\phi$: $\Delta \lambda = \frac{h}{mc}~(1-cos~\phi)$ $\frac{\Delta \lambda mc}{h} = 1-cos~\phi$ $cos~\phi = 1 - \frac{\Delta \lambda mc}{h}$ $cos~\phi = 1 - \frac{(6.906\times 10^{-13}~m)(9.109\times 10^{-31}~kg)(3.0\times 10^8~m/s)}{6.63\times 10^{-34}~J~s}$ $cos~\phi = 1 - 0.2846$ $cos~\phi = 0.7154$ $\phi = cos^{-1}~(0.7154)$ $\phi = 44.3^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.