Answer
$\lambda = 7.77\times 10^{-12}~m$
Work Step by Step
We can use Equation (38-20) to find the de Broglie wavelength:
$K = \frac{h^2}{2m \lambda^2}$
$\lambda^2 = \frac{h^2}{2m~K}$
$\lambda = \sqrt{\frac{h^2}{2m~K}}$
$\lambda = \sqrt{\frac{(6.63\times 10^{-34}~J~s)^2}{(2)(9.109\times 10^{-31}~kg)~(25000~eV)(1.6\times 10^{-19}~J/eV)}}$
$\lambda = 7.77\times 10^{-12}~m$