Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1183: 45b

Answer

$1.467\times 10^{-5}$ $W$

Work Step by Step

In the previous part of this problem, we have calculated that $T=310$ $K$ and $\lambda_{max}=9.35\times 10^{-6}$ $m$ $=9.35$ $\mu m$ For small range of wavelength ($\Delta\lambda$), the radiated power ($P$) can be written as $P=S(\lambda)A\Delta\lambda$, ....................$(1)$ where $S(\lambda)$ is the spectral radiancy and $A$ is total surface area of the radiator. $S(\lambda)$ is given by $S(\lambda)=\frac{2\pi c^2h}{\lambda^5}\frac{1}{e^{\frac{hc}{\lambda kT}}-1}$ Given, $T=310$ $K$ and $\lambda=9.35\times 10^{-6}$ $m$ $\therefore \lambda kT=9.35\times 10^{-6}\times 1.38\times 10^{-23}\times 310$ $J.m$ or, $\lambda kT\approx 4\times 10^{-26}$ $J.m$ and $hc=6.63\times 10^{-34}\times 3\times 10^{8}$ $J.m$ or, $hc=1.989\times 10^{-25}$ $J.m$ $\therefore \frac{hc}{\lambda kT}\approx 4.97$ Thus, $S(\lambda)=\frac{2\times\pi\times(3\times10^8)^2\times 6.63\times 10^{-34}}{(9.35\times 10^{-6})^5}\frac{1}{e^{4.97}-1}$ $S(\lambda)=3.668\times 10^{7}$ $W/m^3$ Given, $A=4.00$ $cm^2$ $=0.0004$ $m^2$ and $\Delta\lambda=1.00$ $nm$ $=1\times 10^{-9}$ $m$ $\therefore$ From eq. $1$, we get $ P=3.668\times 10^{7}\times 0.0004\times 1\times 10^{-9}$ $W$ or, $P=1.467\times 10^{-5}$ $W$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.