Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 3 - Section 3.3 - Properties of Logarithms - Exercise Set - Page 475: 87

Answer

$\displaystyle \frac{1}{2}A-\frac{3}{2}C $

Work Step by Step

$\displaystyle \sqrt{\frac{2}{27}}=(\frac{2}{27})^{1/2}=(\frac{2}{3^{3}})^{1/2}=\frac{2^{1/2}}{3^{3/2}}$ $\displaystyle \log_{b}\sqrt{\frac{2}{27}}=\log_{b}\frac{2^{1/2}}{3^{3/2}}$ ...apply the Quotient Rule: $\displaystyle \quad \log_{b}(\frac{M}{N})=\log_{b}\mathrm{M}-\log_{b}\mathrm{N}$ $=\log_{b}2^{1/2}-\log_{b}3^{3/2}$ $\quad $...apply the Power Rule: $\quad \log_{b}(M^{p})=p\cdot\log_{b}\mathrm{M}$ $=\displaystyle \frac{1}{2}\log_{b}2-\frac{3}{2}\log_{b}3$ ... use the definitions of A and C $=\displaystyle \frac{1}{2}A-\frac{3}{2}C $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.