Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 3 - Section 3.3 - Properties of Logarithms - Exercise Set - Page 475: 39

Answer

$1+2\displaystyle \log x+\frac{1}{3}\log(1-x)-\log 7-2\log(x+1)$

Work Step by Step

$\displaystyle \log[\frac{10x^{2}\sqrt[3]{1-x}}{7(x+1)^{2}}]=\quad $...apply the Quotient Rule: $\displaystyle \quad \log_{b}(\frac{M}{N})=\log_{b}\mathrm{M}-\log_{b}\mathrm{N}$ $=\log(10\cdot x^{2}\cdot\sqrt[3]{1-x})-\log[7\cdot(x+1)^{2}]$ $\quad $...apply the Product Rule: $\quad \log_{b}(MN)=\log_{b}\mathrm{M}+\log_{b}\mathrm{N}$ $=\log 10+\log x^{2}+\log\sqrt[3]{1-x}-[\log 7+\log(x+1)^{2}]$ $=\log 10+\log x^{2}+\log\sqrt[3]{1-x}-\log 7-\log(x+1)^{2}$ ... $\log 10$=1 ... $\sqrt[3]{1-x}=(1-x)^{1/3}$ $=1+\log x^{2}+\log(1-x)^{1/3}-\log 7-\log(x+1)^{2}$ $\quad $...apply the Power Rule: $\quad \log_{b}(M^{p})=p\cdot\log_{b}\mathrm{M}$ $=1+2\displaystyle \log x+\frac{1}{3}\log(1-x)-\log 7-2\log(x+1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.