Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 3 - Section 3.3 - Properties of Logarithms - Exercise Set - Page 475: 68

Answer

$\ln\sqrt[3]{\frac{(x+6)^{5}}{x(x^{2}-25)}}$

Work Step by Step

$\displaystyle \frac{1}{3}[5\ln(x+6)-\ln x-\ln(x^{2}-25)]$ ... move the $5$ in the first term by applying the power rule $=\displaystyle \frac{1}{3}[\ln(x+6)^{2}-(\ln x+\ln(x^{2}-25))]$ ... apply the product rule $=\displaystyle \frac{1}{3}\{\ln(x+6)^{2}-\ln[x(x^{2}-25)]\}$ ... apply the quotient rule $=\displaystyle \frac{1}{3}\ln[\frac{(x+6)^{5}}{x(x^{2}-25)}]$ ... move the $\displaystyle \frac{1}{3}$ by applying the power rule $=\displaystyle \ln[\frac{(x+6)^{5}}{x(x^{2}-25)}]^{1/3}$ ... write the rational exponent as a root (optional) $=\ln\sqrt[3]{\frac{(x+6)^{5}}{x(x^{2}-25)}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.