Answer
$2\log_b{x} + \log_b{y}$
Work Step by Step
RECALL:
(1) $\log_b{(MN)} = \log_b{M} + \log_b{N}$
(2) $\log_b{(\frac{M}{N})} = \log_b{M} - \log_b{N}$
(3) $\log_b{(b^x)}=x$
(4) $\log_b{(a^n)} = n \cdot \log_b{a}$
Use rule (1) above to obtain
$=\log_b{x^2}+\log_b{y}$
Use rule (4) above to obtain:
$=2\log_b{x} + \log_b{y}$