Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 3 - Section 3.3 - Properties of Logarithms - Exercise Set - Page 475: 25

Answer

$2-\displaystyle \frac{1}{2}\log_{6}(x+1)$

Work Step by Step

$\displaystyle \log_{6}\left(\frac{36}{\sqrt{x+1}}\right)=$ ...apply the Quotient Rule: $\displaystyle \quad \log_{b}(\frac{M}{N})=\log_{b}\mathrm{M}-\log_{b}\mathrm{N}$ =$\log_{6}36-\log_{6}\sqrt{x+1}$ ... write $36$ as $6^{2},\quad\sqrt{x+1}=(x+1)^{1/2}$ $=\log_{6}6^{2}-\log_{6}(x+1)^{1/2}\quad $...apply the Power Rule: $\quad \log_{b}(M^{p})=p\cdot\log_{b}\mathrm{M}$ $=2\displaystyle \log_{6}6-\frac{1}{2}\log_{6}(x+1)\quad $...apply the basic property: $\log_{b}b=1$ $=2-\displaystyle \frac{1}{2}\log_{6}(x+1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.