Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 3 - Section 3.3 - Properties of Logarithms - Exercise Set - Page 475: 38

Answer

$4\displaystyle \ln x+\frac{1}{2}\ln(x^{2}+3)-5\ln(x+3)$

Work Step by Step

$\displaystyle \ln[\frac{x^{4}\sqrt{x^{2}+3}}{(x+3)^{5}}]=\quad $...apply the Quotient Rule: $\displaystyle \quad \log_{b}(\frac{M}{N})=\log_{b}\mathrm{M}-\log_{b}\mathrm{N}$ $=\ln(x^{4}\sqrt{x^{2}+3})-\ln(x+3)^{5}$ $\quad $...apply the Product Rule: $\quad \log_{b}(MN)=\log_{b}\mathrm{M}+\log_{b}\mathrm{N}$ $=\ln x^{4}+\ln\sqrt{x^{2}+3}-\ln(x+3)^{5}\quad $...write the root in exp. form $=\ln x^{4}+\ln(x^{2}+3)^{1/2}-\ln(x+3)^{5}$ $\quad $...apply the Power Rule: $\quad \log_{b}(M^{p})=p\cdot\log_{b}\mathrm{M}$ $=4\displaystyle \ln x+\frac{1}{2}\ln(x^{2}+3)-5\ln(x+3)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.