Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 3 - Section 3.3 - Properties of Logarithms - Exercise Set - Page 475: 37

Answer

$3\displaystyle \ln x+\frac{1}{2}\ln(x^{2}+1)-4\ln(x+1)$

Work Step by Step

$\displaystyle \ln[\frac{x^{3}\sqrt{x^{2}+1}}{(x+1)^{4}}]=\quad $...apply the Quotient Rule: $\displaystyle \quad \log_{b}(\frac{M}{N})=\log_{b}\mathrm{M}-\log_{b}\mathrm{N}$ $=\ln(x^{3}\sqrt{x^{2}+1})-\ln(x+1)^{4}$ $\quad $...apply the Product Rule: $\quad \log_{b}(MN)=\log_{b}\mathrm{M}+\log_{b}\mathrm{N}$ $=\ln x^{3}+\ln\sqrt{x^{2}+1}-\ln(x+1)^{4}\quad $...write the root in exp. form $=\ln x^{3}+\ln(x^{2}+1)^{1/2}-\ln(x+1)^{4}$ $\quad $...apply the Power Rule: $\quad \log_{b}(M^{p})=p\cdot\log_{b}\mathrm{M}$ $=3\displaystyle \ln x+\frac{1}{2}\ln(x^{2}+1)-4\ln(x+1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.