Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 3 - Section 3.3 - Properties of Logarithms - Exercise Set - Page 475: 40

Answer

$2+3\displaystyle \log x+\frac{1}{3}\log(5-x)-\log 3-2\log(x+7)$

Work Step by Step

$\displaystyle \log[\frac{100x^{3}\sqrt[3]{5-x}}{3(x+7)^{2}}]=\quad $...apply the Quotient Rule: $\displaystyle \quad \log_{b}(\frac{M}{N})=\log_{b}\mathrm{M}-\log_{b}\mathrm{N}$ $=\log(100\cdot x^{3}\cdot\sqrt[3]{5-x})-\log[3\cdot(x+7)^{2}]$ $\quad $...apply the Product Rule: $\quad \log_{b}(MN)=\log_{b}\mathrm{M}+\log_{b}\mathrm{N}$ $=\log 100+\log x^{3}+\log\sqrt[3]{5-x}-[\log 3+\log(x+7)^{2}]$ ... $\log 100=\log 10^{2}=2$ ... $\sqrt[3]{5-x}=(5-x)^{1/3}$ $=2+\log x^{3}+\log(5-x)^{1/3}-\log 3-\log(x+7)^{2}$ $\quad $...apply the Power Rule: $\quad \log_{b}(M^{p})=p\cdot\log_{b}\mathrm{M}$ $=2+3\displaystyle \log x+\frac{1}{3}\log(5-x)-\log 3-2\log(x+7)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.