Answer
$\displaystyle \ln\frac{(x+9)^{8}}{x^{4}}$
Work Step by Step
$ 8\ln(x+9)-4\ln x=\quad $...apply the Power Rule: $\quad \log_{b}(M^{p})=p\cdot\log_{b}\mathrm{M}$
$=\ln(x+9)^{8}-\ln x^{4}\quad $...apply the Quotient Rule: $\displaystyle \quad \log_{b}(\frac{M}{N})=\log_{b}\mathrm{M}-\log_{b}\mathrm{N}$
$=\displaystyle \ln\frac{(x+9)^{8}}{x^{4}}$