Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.3 The Method of Undetermined Coefficients - Problems - Page 237: 9

Answer

$y(t)=\frac{3}{16}(1-cos(2t))+\frac{1}{8}t^2$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}'''+4{y}'=0 \;\;\;\;\Rightarrow \;\;\;\; r^3e^{rt}+4re^{rt}=0\\\\$ $r^3+4r=r(r^2+4)=0 $ $ \rightarrow\;\;\;\;\; r_{1}=0\;\;\;\;\;\;\;or\;\;\;\;,r_{2,3}=\pm 2i\;\;\;\;\\\\$ $\boxed{y_{c}(t)= C_{1}+C_{2}cos(2t)+C_{3}sin(2t)}$ Let; $\;\;\;\;Y(t)=At^2+Bt$ ${Y}'=2At+B$ ${Y}''=2A$ ${Y}'''=0$ ${y}'''+4{y}'=t$ $0+8At+4B=t$ $8At+4B=t \;\;\;\;\;\;\Rightarrow \;\;\;A=\frac{1}{8}\;\;\;,\;\;\;B=0\;\;\;\;\;\;$ $\boxed{Y(t)=\frac{1}{8}t^2}$ The general solution : $y(t)=y_{c}(t)+Y(t)$ $y(t)=C_{1}+C_{2}cos(2t)+C_{3}sin(2t)+\frac{1}{8}t^2$ $y(0)=C_{1}+C_{2}=0$ ${y}'(0)=2C{3}=0 \;\;\;\;\;\;\rightarrow \;\;\;\;C_{3}=0$ ${y}''(0)=-4C_{2}+\frac{1}{4}=1\;\;\;\;\;\;\rightarrow \;\;\;\;C_{2}=\frac{-3}{16}$ $C_{1}=\frac{3}{16}\;\;\;\;\;,\;\;\;C_{2}=\frac{-3}{16}\;\;\;\;,\;\;\;\;C_{3}=0$ $y(t)=\frac{3}{16}+\frac{-3}{16}cos(2t)+\frac{1}{8}t^2$ $y(t)=\frac{3}{16}(1-cos(2t))+\frac{1}{8}t^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.