Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.3 The Method of Undetermined Coefficients - Problems - Page 237: 6

Answer

$y(t)=C_{1}cos(t)+C_{2}sin(t)+C_{3}tcos(t)+C_{4}tsin(t)+3+\frac{1}{9}cos(2t)$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}^{(4)}+2{y}''+y=0 \;\;\;\;\Rightarrow \;\;\;\; r^4e^{rt}+2r^2e^{rt}+e^{rt}=0\\\\$ $r^4+2r^2+1=(r^2+1)^2=0 $ $ \rightarrow\;\;\;\;\; r_{1},r_{2}=i\;\;\;\;\;\;\;or\;\;\;r_{3},r_{4}=-i\;\;\;\;\;\\\\$ $\boxed{y_{c}(t)= C_{1}cos(t)+C_{2}sin(t)+C_{3}tcos(t)+C_{4}tsin(t)}$ Let; $\;\;\;\;Y(t)=A+Bcos(2t)+Csin(2t)$ ${Y}'=-2Btsin(2t)+2Ccos(2t)$ ${Y}''=-4Bcos(2t)-4Csin(2t)$ ${Y}'''=8Btsin(2t)-8Ccos(2t)$ ${Y}^{(4)}=16Bcos(2t)+16Csin(2t)$ ${y}^{(4)}+2{y}''+y=3+cos(2t)$ $16Bcos(2t)+16Csin(2t)-8Bcos(2t)-8Csin(2t)+A+Bcos(2t)+Csin(2t)=3+cos(2t)$ $9Bcos(2t)+9Csin(2t)+A=3+cos(2t) \;\;\;\;\;\;\Rightarrow \;\;\;A=3\;\;\;,\;\;\;C=0\;\;\;,\;\;\;B=\frac{1}{9}\;\;\;\;\;\;$ $\boxed{Y(t)=3+\frac{1}{9}cos(2t)}$ The general solution : $y(t)=y_{c}(t)+Y(t)$ $y(t)=C_{1}cos(t)+C_{2}sin(t)+C_{3}tcos(t)+C_{4}tsin(t)+3+\frac{1}{9}cos(2t)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.