Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.3 The Method of Undetermined Coefficients - Problems - Page 237: 13

Answer

$Y(t)=At^4+Bt^3+Ct^2+Dt+Ft^2e^{t}$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}'''-2{y}''+{y}'=0 \;\;\;\;\Rightarrow \;\;\;\; r^3e^{rt}-2r^2e^{rt}+re^{rt}=0\\\\$ $r^3-2r^2+r=r(r-1)^2=0 $ $ \rightarrow\;\;\;\;\; r_{1}=0\;\;\;\;\;\;\;or\;\;\;\;,r_{2,3}=1\;\;\;\;\\\\$ $\boxed{y_{c}(t)= C_{1}+C_{2}e^{t}+C_{3}te^{t}}$ $\;\;\;\;g=At^3+Bt^2+Ct+D+Fe^{t}$ $g_{1}=At^3+Bt^2+Ct+D\;\;\;\;\;$ multiply this equation by $t$ $g_{1}=At^4+Bt^3+Ct^2+Dt$ $g_{2}=Fe^{t}\;\;\;\;\;\;\;$ multiply this equation by $t^2$ $g_{2}=Ft^2e^{t}$ $Y(t)=g_{1}+g_{2}$ $\boxed{Y(t)=At^4+Bt^3+Ct^2+Dt+Ft^2e^{t}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.