Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.3 The Method of Undetermined Coefficients - Problems - Page 237: 1

Answer

$y(t)=C_{1}e^{t}+C_{2}te^{t}+C_{3}e^{-t}+\frac{1}{2}te^{-t}+3$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}'''-{y}''-{y}'+y=0 \;\;\;\;\Rightarrow \;\;\;\; r^3e^{rt}-r^2e^{rt}-re^{rt}+e^{rt}=0\\\\$ $r^3-r^2-r+1=(r-1)(r^2-1)=0 $ $ \rightarrow\;\;\;\;\; r_{1},r_{2}=1\;\;\;\;\;or\;\;\;r_{3}=-1\;\;\;\;\;\\\\$ So the 3 roots are: $\;\;\;\;r_{1},r_{2}=1 \;\;\;,\;\;r_{3}=-1$ $\boxed{y_{c}(t)= C_{1}e^{t}+C_{2}te^{t}+C_{3}e^{-t}}$ Let; $\;\;\;\;Y(t)=Ate^{-t}+B$ ${Y}'=Ae^{-t}-Ate^{-t}$ ${Y}''=-2Ae^{-t}+Ate^{-t}$ ${Y}'''=3Ae^{-t}-Ate^{-t}$ ${Y}'''-{Y}''-{Y}'+Y=2e^{-t}+3$ $3Ae^{-t}-Ate^{-t}+2Ae^{-t}-Ate^{-t}-Ae^{-t}+Ate^{-t}+Ate^{-t}+B=2e^{-t}+3$ $4Ae^{-t}+B=2e^{-t}+3 \;\;\;\;\;\;\Rightarrow \;\;\;A=\frac{1}{2}\;\;\;,\;\;\;B=3$ $\boxed{Y(t)=\frac{1}{2}te^{-t}+3}$ The general solution : $y(t)=y_{c}(t)+Y(t)$ $y(t)=C_{1}e^{t}+C_{2}te^{t}+C_{3}e^{-t}+\frac{1}{2}te^{-t}+3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.