Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.3 The Method of Undetermined Coefficients - Problems - Page 237: 10

Answer

$y(t)=(t-4)cos(t)-(\frac{3}{2}t+4)sin(t)+3t+4$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}^{(4)}+2{y}''+{y}=0 \;\;\;\;\Rightarrow \;\;\;\; r^4e^{rt}+2r^2e^{rt}+e^{rt}=0\\\\$ $r^4+2r^2+1=(r^2+1)^2=0 $ $ \rightarrow\;\;\;\;\; r_{1,2}=\pm i\;\;\;\;\;\;\;or\;\;\;\;,r_{3,4}=\pm i\;\;\;\;\\\\$ $\boxed{y_{c}(t)= C_{1}cos(t)+C_{2}sin(t)+C_{3}tcos(t)+C_{4}tsin(t)}$ Let; $\;\;\;\;Y(t)=At+B$ ${Y}'=A$ ${Y}''={Y}'''={Y}^{(4)}$ ${y}^{(4)}+2{y}''+{y}=3t+4$ $0+0+At+B=3t+4$ $At+B=3t+4 \;\;\;\;\;\;\Rightarrow \;\;\;A=3\;\;\;,\;\;\;B=4\;\;\;\;\;\;$ $\boxed{Y(t)=3t+4}$ The general solution : $y(t)=y_{c}(t)+Y(t)$ $y(t)=C_{1}cos(t)+C_{2}sin(t)+C_{3}tcos(t)+C_{4}tsin(t)+3t+4$ $y(0)=C_{1}+4=0 \;\;\;\;\;\;\rightarrow \;\;\;\;C_{1}=-4$ ${y}'(0)=C_{2}+C{3}+3=0 \;\;\;\;\;\;\rightarrow \;\;\;\;C_{3}=-3-C_{2}$ ${y}''(0)=4+C_{4}+C_{4}=1\;\;\;\;\;\;\rightarrow \;\;\;\;C_{4}=\frac{-3}{2}$ ${y}'''(0)=-C_{2}-3C_{3}=1$ $C_{1}=-4\;\;\;\;\;,\;\;\;C_{2}=-4\;\;\;\;,\;\;\;\;C_{3}=1\;\;\;\;,\;\;\;\;C_{4}=\frac{-3}{2}$ $y(t)=-4cos(t)-4sin(t)+tcos(t)-\frac{3}{2}tsin(t)+3t+4$ $y(t)=(t-4)cos(t)-(\frac{3}{2}t+4)sin(t)+3t+4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.