Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.3 The Method of Undetermined Coefficients - Problems - Page 237: 18

Answer

${Y(t)=Ae^t+(Bt+C)e^{-t}+te^{-t}(Dcos(t)+Esin(t))}$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ $y^{(4)}+2{y}'''+2{y}''=0 \;\;\;\;\Rightarrow \;\;\;\; r^4e^{rt}-r^3e^{rt}-r^2e^{rt}-e^{rt}=0\\\\$ $r^4-r^3-r^2-1=r^2(r^2+2r+1)=0 $ $ \rightarrow\;\;\;\;\; r_{1,2}=0\;\;\;\;\;\;\;or\;\;\;\;,r_{3,4}=-1\pm i\;\;\;\;\;\;\;\;\;\\\\$ $\boxed{y_{c}(t)= C_{1}+C_{2}t+C_{3}e^{-t}cos(t)+C_{4}e^{-t}sin(t)}$ $\;\;\;\;g=Ae^t+(Bt+C)e^{-t}+e^{-t}(Dcos(t)+Esin(t))$ $g_{1}=e^{-t}(Dcos(t)+Esin(t))\;\;\;\;\;$multiply this equation by $t$ $g_{1}=te^{-t}(Dcos(t)+Esin(t))$ $g_{2}=(Bt+C)e^{-t}$ $g_{3}=Ae^t\;\;\;\;\;$ $Y(t)=g_{1}+g_{2}+g_{3}$ $\boxed{Y(t)=Ae^t+(Bt+C)e^{-t}+te^{-t}(Dcos(t)+Esin(t))}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.