Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.3 The Method of Undetermined Coefficients - Problems - Page 237: 15

Answer

$Y(t)=At^2e^{t}+Bcos(t)+Csin(t)$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}''''-2{y}''+y=0 \;\;\;\;\Rightarrow \;\;\;\; r^4e^{rt}-2re^{rt}+e^{rt}=0\\\\$ $r^4-2r^2+1=r(r^2-1)=(r-1)^2(r+1)^2=0 $ $ \rightarrow\;\;\;\;\; r_{1,2}=1\;\;\;\;\;\;\;or\;\;\;\;,r_{3,4}=-1\;\;\;\;\;\\\\$ $\boxed{y_{c}(t)= C_{1}e^{t}+C_{2}te^{t}+C_{3}e^{-t}+C_{4}te^{-t}}$ $\;\;\;\;g=Ae^{t}+Bcos(t)+Csin(t)$ $g_{1}=Ae^{t}\;\;\;\;\;$multiply this equation by $t^2$ $g_{1}=At^2e^{t}$ $g_{2}=Bcos(t)+Csin(t)\;\;\;\;\;$ $Y(t)=g_{1}+g_{2}$ $\boxed{Y(t)=At^2e^{t}+Bcos(t)+Csin(t)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.