Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.3 The Method of Undetermined Coefficients - Problems - Page 237: 4

Answer

$y(t)=C_{1}+C_{2}e^{t}+C_{3}e^{-t}+cos(t)$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}'''-{y}'=0 \;\;\;\;\Rightarrow \;\;\;\; r^3e^{rt}-re^{rt}=0\\\\$ $r^3-r=r(r^2-1)=0 $ $ \rightarrow\;\;\;\;\; r_{1}=0\;\;\;\;\;\;\;or\;\;\;r_{2}=1\;\;,\;\;r_{3}=-1\;\;\;\;\;\\\\$ $\boxed{y_{c}(t)= C_{1}+C_{2}e^{t}+C_{3}e^{-t}}$ Let; $\;\;\;\;Y(t)=Acos(t)+Bsin(t)$ ${Y}'=-Asin(t)+Bcos(t)$ ${Y}''=-Acos(t)-Bsin(t)$ ${Y}'''=Asin(t)-Bcos(t)$ ${Y}'''-{Y}'=2sin(t)$ $Asin(t)-Bcos(t)+Asin(t)-Bcos(t)=2sin(t)$ $2Asin(t)-Bcos(t)=2sin(t) \;\;\;\;\;\;\Rightarrow \;\;\;A=1\;\;\;,\;\;\;B=0\;\;\;\;\;\;$ $\boxed{Y(t)=cos(t)}$ The general solution : $y(t)=y_{c}(t)+Y(t)$ $y(t)=C_{1}+C_{2}e^{t}+C_{3}e^{-t}+cos(t)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.