Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.3 The Method of Undetermined Coefficients - Problems - Page 237: 3

Answer

$y(t)=C_{1}e^{-t}+C_{2}cos(t)+C_{3}sin(t)+\frac{1}{2}te^{-t}+4(t-1)$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}'''+{y}''+{y}'+y=0 \;\;\;\;\Rightarrow \;\;\;\; r^3e^{rt}+r^2e^{rt}+re^{rt}+e^{rt}=0\\\\$ $r^3+r^2+r+1=(r^+1)(r^2+1)=0 $ $ \rightarrow\;\;\;\;\; r_{1}=-1\;\;\;\;\;\;\;or\;\;\;r_{2},r_{3}=\pm i\;\;\;\;\;\\\\$ $\boxed{y_{c}(t)= C_{1}e^{-t}+C_{2}cos(t)+C_{3}sin(t)}$ Let; $\;\;\;\;Y(t)=Ate^{-t}+Bt+C$ ${Y}'=Ae^{-t}-Ate^{-t}+B$ ${Y}''=-2Ae^{-t}+Ate^{-t}$ ${Y}'''=3Ae^{-t}-Ate^{-t}$ ${Y}'''+{Y}''+{Y}'+Y=e^{-t}+4t$ $3Ae^{-t}-Ate^{-t}-2Ae^{-t}+Ate^{-t}+Ae^{-t}-Ate^{-t}+B+Ate^{-t}+Bt+C=e^{-t}+4t$ $2Ae^{-t}+Bt+B+C=e^{-t}+4t \;\;\;\;\;\;\Rightarrow \;\;\;A=\frac{1}{2}\;\;\;,\;\;\;B=4\;\;\;,\;\;\;C=-4$ $\boxed{Y(t)=\frac{1}{2}te^{-t}+4t-4}$ The general solution : $y(t)=y_{c}(t)+Y(t)$ $y(t)=C_{1}e^{-t}+C_{2}cos(t)+C_{3}sin(t)+\frac{1}{2}te^{-t}+4(t-1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.