Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.3 The Method of Undetermined Coefficients - Problems - Page 237: 16

Answer

${Y(t)=(A+Bt)e^{t}+Ctcos(2t)+Dtsin(2t)+Et^2}$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}''''+4{y}''=0 \;\;\;\;\Rightarrow \;\;\;\; r^4e^{rt}+4r^2e^{rt}=0\\\\$ $r^4+4r^2=r(r^2-1)=r^2(r^2+4)=0 $ $ \rightarrow\;\;\;\;\; r_{1,2}=0\;\;\;\;\;\;\;or\;\;\;\;,r_{3,4}=\pm 2i\;\;\;\;\;\\\\$ $\boxed{y_{c}(t)= C_{1}+C_{2}t+C_{3}cos(2t)+C_{4}sin(2t)}$ $\;\;\;\;g=(A+Bt)e^{t}+Ccos(2t)+Dsin(2t)+E$ $g_{1}=Ccos(2t)+Dsin(2t)\;\;\;\;\;$multiply this equation by $t$ $g_{1}=Ctcos(2t)+Dtsin(2t)$ $g_{2}=(A+Bt)e^{t}$ $g_{3}=E\;\;\;\;\;$multiply this equation by $t^2$ $g_{3}=Et^2$ $Y(t)=g_{1}+g_{2}+g_{3}$ $\boxed{Y(t)=(A+Bt)e^{t}+Ctcos(2t)+Dtsin(2t)+Et^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.