Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.3 The Method of Undetermined Coefficients - Problems - Page 237: 8

Answer

$y(t)=C_{1}+C_{2}t+C_{3}t^2+C_{4}e^{-t}+\frac{1}{40}cos(2t)+\frac{1}{20}sin(2t)$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}^{(4)}+{y}'''=0 \;\;\;\;\Rightarrow \;\;\;\; r^4e^{rt}+r^3e^{rt}=0\\\\$ $r^4+r^3=r^3(r+1)=0 $ $ \rightarrow\;\;\;\;\; r_{1},r_{2},r_{3}=0\;\;\;\;\;\;\;or\;\;\;\;,r_{4}=-1\;\;\;\;\\\\$ $\boxed{y_{c}(t)= C_{1}+C_{2}t+C_{3}t^2+C_{4}e^{-t}}$ Let; $\;\;\;\;Y(t)=Acos(2t)+Bsin(2t)$ ${Y}'=-2Asin(2t)+2Bcos(2t)$ ${Y}''=-4Acos(2t)-4Bsin(2t)$ ${Y}'''=8Asin(2t)-8Bcos(2t)$ ${Y}^{(4)}=16Acos(2t)+16Bsin(2t)$ ${y}^{(4)}+{y}'''=sin(2t)$ $16Acos(2t)+16Bsin(2t)+8Asin(2t)-8Bcos(2t)=sin(2t)$ $(16A-8B)cos(2t)+(16B+8A)sin(2t)=sin(2t) \;\;\;\;\;\;$$\Rightarrow \;\;\;16A-8B=0\;\;\;,\;\;\;16B+8A=1\;\;\;,\;\;\;\Rightarrow \;\;\;\;\;A=\frac{1}{40}\;\;\;\;\;B=\frac{1}{20}$ $\boxed{Y(t)=\frac{1}{40}cos(2t)+\frac{1}{20}sin(2t)}$ The general solution : $y(t)=y_{c}(t)+Y(t)$ $y(t)=C_{1}+C_{2}t+C_{3}t^2+C_{4}e^{-t}+\frac{1}{40}cos(2t)+\frac{1}{20}sin(2t)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.