Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.3 The Method of Undetermined Coefficients - Problems - Page 237: 2

Answer

$y(t)=C_{1}e^{t}+C_{2}e^{-t}+C_{3}cos(t)+C_{4}sin(t)-3t-\frac{1}{4}tsin(t)$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}^{(4)}-y=0 \;\;\;\;\Rightarrow \;\;\;\; r^4e^{rt}-e^{rt}=0\\\\$ $r^4-1=(r^2+1)(r^2-1)=0 $ $ \rightarrow\;\;\;\;\; r_{1}=1\;\;,\;\;r_{2}=-1\;\;\;\;\;or\;\;\;r_{3},r_{4}=\pm i\;\;\;\;\;\\\\$ $\boxed{y_{c}(t)= C_{1}e^{t}+C_{2}e^{-t}+C_{3}cos(t)+C_{4}sin(t)}$ Let; $\;\;\;\;Y(t)=At+Ctcos(t)+Btsin(t)$ ${Y}'=A-Ctsin(t)+Bsin(t)+Ccos(t)+Btcos(t)$ ${Y}''=-Btcos(t)-Ctsin(t)-2Bsin(t)-2Ccos(t)$ ${Y}'''=Btsin(t)-Ctcos(t)-3Bsin(t)-3Ccos(t)$ ${Y}^{(4)}=Btcos(t)+Ctsin(t)+4Bsin(t)-4Ccos(t)$ ${Y}^{(4)}-Y=3t+cos(t)$ $Btcos(t)+Ctsin(t)+4Bsin(t)-4Ccos(t)-At-Btcos(t)-Ctsin(t)=3t+cos(t)$ $-At+4Bsin(t)-4Ccos(t)=3t+cos(t) $$\;\;\;\;\;\;\Rightarrow \;\;\;A=-3\;\;\;,\;\;\;B=\frac{-1}{4}\;\;\;,\;\;\;C=0$ $\boxed{Y(t)=-3t-\frac{1}{4}tsin(t)}$ The general solution : $y(t)=y_{c}(t)+Y(t)$ $y(t)=C_{1}e^{t}+C_{2}e^{-t}+C_{3}cos(t)+C_{4}sin(t)-3t-\frac{1}{4}tsin(t)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.