Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.3 The Method of Undetermined Coefficients - Problems - Page 237: 5

Answer

$y(t)=C_{1}+C_{2}t+C_{3}e^{2t}+C_{4}e^{-2t}+\frac{-1}{48}t^4+\frac{-1}{16}t^2+\frac{-1}{3}e^{t}$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}^{(4)}-4{y}''=0 \;\;\;\;\Rightarrow \;\;\;\; r^4e^{rt}-4r^2e^{rt}=0\\\\$ $r^4-4r^2=r^2(r^2-4)=0 $ $ \rightarrow\;\;\;\;\; r_{1},r_{2}=0\;\;\;\;\;\;\;or\;\;\;r_{3}=2\;\;,\;\;r_{3}=-2\;\;\;\;\;\\\\$ $\boxed{y_{c}(t)= C_{1}+C_{2}t+C_{3}e^{2t}+C_{4}e^{-2t}}$ Let; $\;\;\;\;Y(t)=At^4+Bt^3+Ct^2+De^{t}$ ${Y}'=4At^3+3Bt^2+2Ct+De^{t}$ ${Y}''=12At^2+6Bt+2C+De^{t}$ ${Y}'''=24At+6B+De^{t}$ ${Y}^{(4)}=24A+De^{t}$ ${Y}^{(4)}-4{Y}''=t^2+e^t$ $24A+De^{t}-48At^2-24Bt-8C-4De^{t}=t^2+e^t$ $-3De^{t}-48At^2-24Bt+(24A-8C)=t^2+e^t \;\;\;\;\;\;\Rightarrow \;\;\;A=\frac{-1}{48}\;\;\;,\;\;\;B=0\;\;\;,\;\;\;C=\frac{-1}{16}\;\;\;,\;\;\;D=\frac{-1}{3}$ $\boxed{Y(t)=cos(t)}$ The general solution : $y(t)=\frac{-1}{48}t^4+\frac{-1}{16}t^2+\frac{-1}{3}e^{t}$ $y(t)=C_{1}+C_{2}t+C_{3}e^{2t}+C_{4}e^{-2t}+\frac{-1}{48}t^4+\frac{-1}{16}t^2+\frac{-1}{3}e^{t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.