Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.3 The Method of Undetermined Coefficients - Problems - Page 237: 7

Answer

$y(t)=C_{1}+C_{2}t+C_{3}t^2+C_{4}e^{-t}+C_{5}e^{\frac{1}{2}t}cos(\frac{\sqrt{3}}{2}t)+C_{6}e^{\frac{1}{2}t}sin(\frac{\sqrt{3}}{2}t)+\frac{1}{24}t^4$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}^{(6)}+{y}'''=0 \;\;\;\;\Rightarrow \;\;\;\; r^6e^{rt}+r^3e^{rt}=0\\\\$ $r^6+r^3=r^3(r^3+1)=r^3(r+1)(r^2-r+1)=0 $ $ \rightarrow\;\;\;\;\; r_{1},r_{2},r_{3}=0\;\;\;\;\;\;\;or\;\;\;\;,r_{4}=-1\;\;\;\;or\;\;\;\;r_{5,6}=\frac{1\pm \sqrt{3}i}{2}\\\\$ $\boxed{y_{c}(t)= C_{1}+C_{2}t+C_{3}t^3+C_{4}e^{-t}+C_{5}e^{\frac{1}{2}t}cos(\frac{\sqrt{3}}{2}t)+C_{6}e^{\frac{1}{2}t}sin(\frac{\sqrt{3}}{2}t)}$ Let; $\;\;\;\;Y(t)=At^4+Bt^3$ ${Y}'=4At^3+3Bt^2$ ${Y}''=12At^2+6Bt$ ${Y}'''=24At+6B$ ${Y}^{(4)}=24A$ $Y^{(5)}=Y^{(6)}=0$ ${y}^{(6)}+{y}'''=t$ $0+24At+6B=t$ $24At+6B=t \;\;\;\;\;\;\Rightarrow \;\;\;A=\frac{1}{24}\;\;\;,\;\;\;B=0\;\;\;,\;\;\;\;\;\;\;\;\;$ $\boxed{Y(t)=\frac{1}{24}t^4}$ The general solution : $y(t)=y_{c}(t)+Y(t)$ $y(t)=C_{1}+C_{2}t+C_{3}t^2+C_{4}e^{-t}+C_{5}e^{\frac{1}{2}t}cos(\frac{\sqrt{3}}{2}t)+C_{6}e^{\frac{1}{2}t}sin(\frac{\sqrt{3}}{2}t)+\frac{1}{24}t^4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.