Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.1 - Inverse Functions and Their Derivatives - Exercises 7.1 - Page 373: 52

Answer

It is a decreasing function, so it has an inverse (it is one-to-one.) $\displaystyle \frac{df^{-1}}{dx}=-\frac{1}{6}(1-x)^{-2/3}$

Work Step by Step

Take two values of x, $x_{1} \gt x_{2}\qquad $... the cube function is an increasing function, $x_{1}^{3} \gt x_{2}^{3}\qquad $... multiply with -8 (inequality changes) $-8x_{1}^{3} \lt -8x_{2}^{3}\qquad$ ... add 1 $1-8x_{1}^{3} \lt 1-8x_{2}^{3}$ So f is a decreasing funtion. By Exercise 49, it is one-to-one and has an inverse. Theorem 1 provides a way to find a formula for $\displaystyle \frac{df^{-1}}{dx}$ $\displaystyle \frac{d}{dx}[f^{-1}(x)]=\frac{1}{f'[f^{-1}(x)]}$ We find $f^{-1}(x)\quad \left[\begin{array}{l} y=1-8x^{3}\\ x=1-8y^{3}\\ 8y^{3}=1-x\\ y=(1-x)/8\\ y=(1-x)^{1/3}/2\\ f^{-1}(x)=(1-x)^{1/3}/2 \end{array}\right]\quad f^{-1}(x)=\displaystyle \frac{1}{2}(1-x)^{1/3}$ We find$ f'(x).$ $f'(x)=-8\cdot 3x^{2}=-24x^{2}$ Calculate $f'[f^{-1}(x)]$ $f'[\displaystyle \frac{1}{2}(1-x)^{1/3}]=-24\cdot[\frac{1}{2}(1-x)^{1/3}]^{2}=-6(1-x)^{2/3}$ Apply the formula: $\displaystyle \frac{d}{dx}[f^{-1}(x)]=\frac{1}{-6(1-x)^{2/3}}=-\frac{1}{6}(1-x)^{-2/3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.