Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.1 - Inverse Functions and Their Derivatives - Exercises 7.1 - Page 373: 35

Answer

$ a.\quad f^{-1}(x)=\displaystyle \frac{1}{2}x-\frac{3}{2}$ $ b.\quad$ see image $ c.\quad \displaystyle \left.\frac{df}{dx}\right|_{x=-1}=2,\qquad \left.\frac{df^{-1}}{dx}\right|_{x=1}=\frac{1}{2}$

Work Step by Step

$ a.\quad$ Set $y=f(x)$. Interchange x and y $y=2x+3$ $x=2y+3$ ... solve for y $x-3=2y$ $y=\displaystyle \frac{x-3}{2}$ ... replace y with $f^{-1}(x)$ $f^{-1}(x)=\displaystyle \frac{1}{2}x-\frac{3}{2}$ $ b.\quad$see graphs (attached image) $ c.\quad$ $f(x)=2x+3$ $\displaystyle \frac{df}{dx}=2,\qquad \left.\frac{df}{dx}\right|_{x=-1}=2$ $f(-1)=2(-1)+3=1\quad\Rightarrow\quad f^{-1}(1)=-1$ $f^{-1}(x)=\displaystyle \frac{1}{2}x-\frac{3}{2}$ $\displaystyle \frac{df^{-1}}{dx}=\frac{1}{2},\qquad \left.\frac{df^{-1}}{dx}\right|_{x=1}=\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.