Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.1 - Inverse Functions and Their Derivatives - Exercises 7.1 - Page 373: 37

Answer

$ a.\quad f^{-1}(x)=-\displaystyle \frac{1}{4}x+\frac{5}{4}$ $ b.\quad$ see image $ c.\quad \displaystyle \left.\frac{df}{dx}\right|_{x=1/2}=-4,\qquad \left.\frac{df^{-1}}{dx}\right|_{x=3}=-\frac{1}{4}$

Work Step by Step

$ a.\quad$ Set $y=f(x)$. Interchange x and y $y=5-4x$ $x=5-4y$ ... solve for y $x-5=-4y$ $y=-\displaystyle \frac{1}{4}x+\frac{5}{4}$ ... replace y with $f^{-1}(x)$ $f^{-1}(x)=-\displaystyle \frac{1}{4}x+\frac{5}{4}$ $ b.\quad$see graphs (attached image) $ c.\quad$ $f(x)=5-4x$ $\displaystyle \frac{df}{dx}=-4,\qquad \left.\frac{df}{dx}\right|_{x=1/2}=-4$ $a=\displaystyle \frac{1}{2}$ $f(\displaystyle \frac{1}{2})=5-4(\frac{1}{2})=3\quad\Rightarrow\quad f^{-1}(3)=\frac{1}{2}$ $f^{-1}(x)=-\displaystyle \frac{1}{4}x+\frac{5}{4}$ $\displaystyle \frac{df^{-1}}{dx}=-\frac{1}{4},\qquad \left.\frac{df^{-1}}{dx}\right|_{x=3}=-\frac{1}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.