Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.1 - Inverse Functions and Their Derivatives - Exercises 7.1 - Page 373: 32

Answer

$f^{-1}(x)=(\displaystyle \frac{3x}{x-1})^{2}$ Domain of $f^{-1}(x)=(-\infty,0]\cup(1,\infty)$ Range of $f^{-1}(x)=$ domain od f =$[0,9)\cup(9,\infty)$

Work Step by Step

Domain of f = $\{x\in \mathbb{R}|x\geq 0,\ x\neq 9\}.$ (1) Solve the equation for x, writing $y=f(x)$ $y=\displaystyle \frac{\sqrt{x}}{\sqrt{x}-3},\quad $... multiply with $(\sqrt{x}-3)$ $y\sqrt{x}-3y=\sqrt{x}$ $y\sqrt{x}-\sqrt{x}=3y$ $\sqrt{x}(y-1)=3y$ $\displaystyle \sqrt{x}=\frac{3y}{y-1}$ $x=(\displaystyle \frac{3y}{y-1})^{2},\ \displaystyle \quad\frac{3y}{y-1}\geq 0$ (2) interchange $x\leftrightarrow y, \quad y=f^{-1}(x)$ $y=f^{-1}(x)=(\displaystyle \frac{3x}{x-1})^{2},\ \displaystyle \quad\frac{3x}{x-1}\geq 0$ To find the domain, divide $\mathbb{R}$ into intervals and test the sign of $\displaystyle \frac{3x}{x-1}$ $\left[\begin{array}{llll} & (-\infty,0] & [0,1) & (1,\infty) \\ test~point & -1 & 0.5 & 2\\ value & \frac{-3}{-4} & \frac{1.5}{-0.5} & \frac{6}{1}\\ sign & + & - & + \end{array}\right]$ Domain of $f^{-1}(x)=(-\infty,0]\cup(1,\infty)$ Range of $f^{-1}(x)=$ domain od f =$[0,9)\cup(9,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.