Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.1 - Inverse Functions and Their Derivatives - Exercises 7.1 - Page 373: 26

Answer

$ f^{-1}(x)=\sqrt[4]{x} $ Domain of $ f^{-1}$ is $[0,\infty)$ Range of $ f^{-1}$ is $[0,\infty)$

Work Step by Step

Given $$ f(x) =x^{4}$$ Find the inverse: \begin{aligned} y &=x^{4} \\ x^4 &=y \\ x &=\sqrt[4]{y} \\ \text {Switch }& x \ and\ y, \text{}\\ y=&\sqrt[4]{x} =f^{-1}(x) \end{aligned} We see that: Domain of $ f^{-1}$ is $[0,\infty)$ and Range of $ f^{-1}$ is $[0,\infty)$ Confirm the inverse: \begin{aligned} f\left(f^{-1}(x)\right) &=f(\sqrt[4]{x}) \\ &=(\sqrt[4]{x})^{4} \\ &=x \\ f^{-1}(f(x)) &=f^{-1}\left(x^{4}\right) \\ &=\sqrt[4]{x^{4}} \\ &=x \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.