Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.1 - Inverse Functions and Their Derivatives - Exercises 7.1 - Page 373: 31

Answer

$f^{-1}(x)=\displaystyle \frac{3-2x}{x-1}$ Domain of $f^{-1}$ = $\{x\in \mathbb{R}|x\neq 1\}$ Range of $f^{-1}=$ domain of f = $\{x\in \mathbb{R}|x\neq 2\}$

Work Step by Step

Domain of f = $\{x\in \mathbb{R}|x\neq 2\}.$ (1) Solve the equation for x, writing $y=f(x)$ $y=\displaystyle \frac{x+3}{x-2},\quad $... multiply with $(x-2)$ $xy-2y=x+3\quad $... add $(-x+2y)$ $xy-x=2y+3$ $x(y-1)=2y+3$ $x=\displaystyle \frac{2y+3}{y-1}$ (2) interchange $x\leftrightarrow y, \quad y=f^{-1}(x)$ $y=f^{-1}(x)=\displaystyle \frac{2x+3}{x-1}$ Domain of $f^{-1}$ = $\{x\in \mathbb{R}|x\neq 1\}$ Range of $f^{-1}=$ domain of f = $\{x\in \mathbb{R}|x\neq 2\}$ Check: $f[f^{-1}(x)]=\displaystyle \frac{f^{-1}(x)+3}{f^{-1}(x)-2}=\frac{\frac{2x+3}{x-1}+3}{\frac{2x+3}{x-1}-2}$ $=\displaystyle \frac{\frac{2x+3+3(x-1)}{x-1} }{\frac{2x+3-2(x-1)}{x-1}}=\frac{5x}{5}=x$ $f^{-1}[f(x)]=\displaystyle \frac{2(f(x))+3}{f(x)-1}=\frac{2(\frac{x+3}{x-2})+3}{\frac{x+3}{x-2}-1}$ $=\displaystyle \frac{\frac{2(x+3)+3(x-2)}{x-2}}{\frac{x+3-(x-2)}{x-2}}=\frac{5x}{5}=x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.