Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.1 - Inverse Functions and Their Derivatives - Exercises 7.1 - Page 373: 33

Answer

$f^{-1}(x)=1-\sqrt{x+1},\quad x\geq-1$ The domain of $f^{-1 }$ is $[-1,\infty)$ The range is $(-\infty,1].$

Work Step by Step

Solve for x. Add 1 to each side and recognize a perfect square. $y+1=x^{2}-2x+1 ,\quad x\leq 1$ $y+1=(x-1)^{2} ,\quad x\leq 1$ $-\sqrt{y+1}=x-1 ,\quad x\leq 1$ (when $x\leq 1$, the RHS is $\leq 0$, so the LHS should be too) $x=1-\sqrt{y+1}$ Replace $x $with $f^{-1}(x)$ $f^{-1}(x)=1-\sqrt{x+1},\quad x\geq-1$ The domain of $f^{-1 }$ is $[-1,\infty)$; the range equals the domain of f, $(-\infty,1].$ $\begin{align*} f(f^{-1}(x))&=[f^{-1}(x)]^{2}-2f^{-1}(x) \\ &=(1-\sqrt{x+1})^{2}-2(1-\sqrt{x+1}) \\ &=1-2\sqrt{x+1}+x+1-2+2\sqrt{x+1} \\ &=x \\ \\ f^{-1}(f(x))&=1-\sqrt{f(x)+1} \\ &=1-\sqrt{x^{2}-2x+1}, \quad x\leq 1 \\ &=1-\sqrt{(x-1)^{2}}, \quad x\leq 1 \\ &=1-|x-1|, \quad x\leq 1 \\ &=1-[-(x-1)], \quad x\leq 1 \\ &=1+x-1 \\ &=x \end{align*} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.