Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.1 - Inverse Functions and Their Derivatives - Exercises 7.1 - Page 373: 36

Answer

$ a.\quad f^{-1}(x)=5x-35$ $ b.\quad$ see image $ c.\quad \displaystyle \left.\frac{df}{dx}\right|_{x=-1}=\frac{1}{5},\qquad \left.\frac{df^{-1}}{dx}\right|_{x=34/5}=5$

Work Step by Step

$ a.\quad$ Set $y=f(x)$. Interchange x and y $y=\displaystyle \frac{1}{5}x+7$ $x=\displaystyle \frac{1}{5}y+7$ ... solve for y $x-7=\displaystyle \frac{1}{5}y$ $y=5x-35$ ... replace y with $f^{-1}(x)$ $f^{-1}(x)=5x-35$ $ b.\quad$ see graphs (attached image) $ c.\quad$ $f(x)=\displaystyle \frac{1}{5}x+7$ $\displaystyle \frac{df}{dx}=\frac{1}{5},\qquad \left.\frac{df}{dx}\right|_{x=-1}=\frac{1}{5}$ $f(-1)=\displaystyle \frac{1}{5}(-1)+7=\frac{34}{5}\quad\Rightarrow\quad f^{-1}(\frac{34}{5})=-1$ $f^{-1}(x)=5x-35$ $\displaystyle \frac{df^{-1}}{dx}=5,\qquad \left.\frac{df^{-1}}{dx}\right|_{x=34/5}=5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.