Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.1 - Inverse Functions and Their Derivatives - Exercises 7.1 - Page 373: 38

Answer

$ a.\quad f^{-1}(x)=\sqrt{\dfrac{x}{2}}$ $ b.\quad$ see image $ c.\quad \displaystyle \left.\frac{df}{dx}\right|_{x=5}=20,\qquad \left.\frac{df^{-1}}{dx}\right|_{x=50}=\frac{1}{20}$

Work Step by Step

$ a.\quad$ Set $y=f(x)$. Interchange x and y $y=2x^{2}\qquad $... note that $y\geq 0$ $x=2y^{2}$ ... solve for y $y^{2}=\displaystyle \frac{x}{2}$ $y=\sqrt{\frac{x}{2}}$ ... replace y with $f^{-1}(x)$ $f^{-1}(x)=\sqrt{\frac{x}{2}}$ $ b.\quad$see graphs (attached image) $ c.\quad$ $a=5$ $f(x)=2x^{2}$ $\displaystyle \frac{df}{dx}=4x,\qquad $ $\left.\frac{df}{dx}\right|_{x=5}=4(5)=20$ $a=5$ $f(5)=2\cdot 5^{2}=50\quad\Rightarrow\quad f^{-1}(50)=5$ $f^{-1}(x)=\sqrt{\frac{x}{2}}=2^{-1/2}x^{1/2}$ $\displaystyle \frac{df^{-1}}{dx}=2^{-1/2}(\frac{1}{2}x^{-1/2})=\frac{1}{2\sqrt{2x}}$ $ \displaystyle \left.\frac{df^{-1}}{dx}\right|_{x=50}=\frac{1}{2\sqrt{2(50)}}=\frac{1}{20}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.