Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.1 - Inverse Functions and Their Derivatives - Exercises 7.1 - Page 373: 34

Answer

f(f^-(x))=x f^-(f(x))=x

Work Step by Step

Step 1: y=(2x^3+1)^1/5 y^5=2x^3+1, y^5-1=2x^3, y^5-1/2=x^3, x=\sqrt[3] (y^5 -1)/2 step 2: \sqrt[3] (x^5 -1)/2=f^-1(x) The domain of f ^-1:(-\infty,\infty), Range of f^-1(-\infty,\infty) ; f(f^-1(x))=(2(\sqrt[3]( x^5 -1)/2)^3+1)^1/5=(2((x^5-1)/2)+1)^1/5=((x^5 -1)+1)^1/5=(x^5)^1/5=x f^-1(f(X))=\sqrt[3] ([(2x^3 +1)^1/5]^5 -1)/2=\sqrt[3] ((2X^3+1)-1)/2=\sqrt[3] 2x^3/2=x
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.