Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.1 - Inverse Functions and Their Derivatives - Exercises 7.1 - Page 373: 42

Answer

$\displaystyle \frac{1}{6}$

Work Step by Step

Apply Th. 1: the derivative rule for inverses. If $f(b)=a$, then $\displaystyle \left.\frac{df^{-1}}{dx}\right|_{x=a}\ \ =\ \ \frac{1}{\left.\frac{df}{dx}\right|_{x=b}}$ We are given $f(5)=0,\qquad (a=0, b=5)$ $f(x)=x^{2}-4x-5$ $\displaystyle \frac{df}{dx}=2x-4$ $\displaystyle \left.\frac{df^{-1}}{dx}\right|_{x=0}\ \ =\ \ \frac{1}{\left.\frac{df}{dx}\right|_{x=5}}=\frac{1}{2(5)-4}=\frac{1}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.