Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 221: 40

Answer

$$\frac{1}{4}$$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( x \right) = {x^2} + 1;\,\,\,\,\,\left( {5,2} \right) \cr & {\text{Calculate }}f'\left( 2 \right) \cr & f'\left( x \right) = 2x \cr & f'\left( 2 \right) = 2\left( 2 \right) \cr & f'\left( 2 \right) = 4 \cr & {\text{Find the derivative of the inverse function}}{\text{, using the THEOREM 3}}{\text{.23}} \cr & \left( {{f^{ - 1}}} \right)'\left( {{y_0}} \right) = \frac{1}{{f'\left( {{x_0}} \right)}},\,\,\,\,{\text{Where }}{y_0} = f\left( {{x_0}} \right) \cr & {\text{Then}}{\text{,}} \cr & \left( {{f^{ - 1}}} \right)'\left( 5 \right) = \frac{1}{{f'\left( 2 \right)}} \cr & \left( {{f^{ - 1}}} \right)'\left( 2 \right) = \frac{1}{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.