Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 221: 33

Answer

$$\,\,\,\,\,y = - \frac{4}{{\sqrt 6 }}x + \frac{2}{{\sqrt 3 }} + \frac{\pi }{3}$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {\cos ^{ - 1}}{x^2};{\text{ }}\left( {\frac{1}{{\sqrt 2 }},\frac{\pi }{3}} \right) \cr & {\text{differentiate }}f\left( x \right) \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{{\cos }^{ - 1}}{x^2}} \right] \cr & {\text{use }}\frac{d}{{du}}\left[ {{{\cos }^{ - 1}}u} \right] = - \frac{1}{{\sqrt {1 - {u^2}} }}\frac{{du}}{{dx}} \cr & f'\left( x \right) = - \frac{1}{{\sqrt {1 - {{\left( {{x^2}} \right)}^2}} }}\frac{d}{{dx}}\left[ {{x^2}} \right] \cr & f'\left( x \right) = - \frac{1}{{\sqrt {1 - {x^4}} }}\left( {2x} \right) \cr & f'\left( x \right) = - \frac{{2x}}{{\sqrt {1 - {x^4}} }} \cr & \cr & {\text{find the slope at the point }}\left( {\frac{1}{{\sqrt 2 }},\frac{\pi }{3}} \right) \cr & m = f'\left( {\frac{1}{{\sqrt 2 }}} \right) = - \frac{{2\left( {1/\sqrt 2 } \right)}}{{\sqrt {1 - {{\left( {1/\sqrt 2 } \right)}^4}} }} \cr & \,\,m = - \frac{2}{{\sqrt 2 \sqrt {3/4} }} \cr & \,\,m = - \frac{4}{{\sqrt 6 }} \cr & \,{\text{find the equation of the tangent line at the point }}\left( {\frac{1}{{\sqrt 2 }},\frac{\pi }{3}} \right) \cr & \,\,\,\,\,y - {y_1} = m\left( {x - {x_1}} \right) \cr & \,\,\,\,\,y - \frac{\pi }{3} = - \frac{4}{{\sqrt 6 }}\left( {x - \frac{1}{{\sqrt 2 }}} \right) \cr & \,\,\,\,\,y - \frac{\pi }{3} = - \frac{4}{{\sqrt 6 }}x + \frac{4}{{2\sqrt 3 }} \cr & \,\,\,\,\,y = - \frac{4}{{\sqrt 6 }}x + \frac{2}{{\sqrt 3 }} + \frac{\pi }{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.