Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 222: 41

Answer

$$\frac{1}{2}$$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( x \right) = \tan x;\,\,\,\,\,\left( {1,\pi /4} \right) \cr & {\text{Calculate }}f'\left( {\frac{\pi }{4}} \right) \cr & f'\left( x \right) = {\sec ^2}x \cr & f'\left( {\frac{\pi }{4}} \right) = {\sec ^2}\left( {\frac{\pi }{4}} \right) \cr & {\text{Find the derivative of the inverse function}}{\text{, using the THEOREM 3}}{\text{.23}} \cr & \left( {{f^{ - 1}}} \right)'\left( {{y_0}} \right) = \frac{1}{{f'\left( {{x_0}} \right)}},\,\,\,\,{\text{Where }}{y_0} = f\left( {{x_0}} \right) \cr & {\text{Then}}{\text{,}} \cr & \left( {{f^{ - 1}}} \right)'\left( {\frac{\pi }{4}} \right) = \frac{1}{{{{\sec }^2}\left( {\frac{\pi }{4}} \right)}} \cr & \left( {{f^{ - 1}}} \right)'\left( {\frac{\pi }{4}} \right) = \frac{1}{{{{\left( {\sqrt 2 } \right)}^2}}} \cr & \left( {{f^{ - 1}}} \right)'\left( {\frac{\pi }{4}} \right) = \frac{1}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.