Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 221: 27

Answer

$$f'\left( x \right) = - \frac{{{e^x}{{\sec }^2}{e^x}}}{{\left| {\tan {e^x}} \right|\sqrt {{{\tan }^2}{e^x} - 1} }}$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {\csc ^{ - 1}}\left( {\tan {e^x}} \right) \cr & {\text{find the derivative}}{\text{,}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{{\csc }^{ - 1}}\left( {\tan {e^x}} \right)} \right] \cr & {\text{use }}\frac{d}{{dx}}\left[ {{{\csc }^{ - 1}}u} \right] = - \frac{1}{{\left| u \right|\sqrt {{u^2} - 1} }}\frac{{du}}{{dx}}.{\text{ let }}u = \tan {e^x} \cr & f'\left( x \right) = - \frac{1}{{\left| {\tan {e^x}} \right|\sqrt {{{\left( {\tan {e^x}} \right)}^2} - 1} }}\frac{d}{{dx}}\left[ {\tan {e^x}} \right] \cr & {\text{use }}\frac{d}{{dx}}\left[ {\tan u} \right] = {\sec ^2}u\frac{{du}}{{dx}} \cr & f'\left( x \right) = - \frac{1}{{\left| {\tan {e^x}} \right|\sqrt {{{\left( {\tan {e^x}} \right)}^2} - 1} }}\left[ {{{\sec }^2}{e^x}} \right]\frac{d}{{dx}}\left[ {{e^x}} \right] \cr & {\text{simplifying}} \cr & f'\left( x \right) = - \frac{1}{{\left| {\tan {e^x}} \right|\sqrt {{{\tan }^2}{e^x} - 1} }}\left( {{{\sec }^2}{e^x}} \right)\left( {{e^x}} \right) \cr & f'\left( x \right) = - \frac{{{e^x}{{\sec }^2}{e^x}}}{{\left| {\tan {e^x}} \right|\sqrt {{{\tan }^2}{e^x} - 1} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.