Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 221: 10

Answer

$$f'\left( x \right) = \frac{1}{{x\sqrt {1 - {{\ln }^2}x} }}$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {\sin ^{ - 1}}\left( {\ln x} \right) \cr & {\text{find the derivative}}{\text{, differentiate both sides with respect to }}x \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{{\sin }^{ - 1}}\left( {\ln x} \right)} \right] \cr & {\text{use }}\frac{d}{{dx}}\left[ {{{\sin }^{ - 1}}u} \right] = \frac{1}{{\sqrt {1 - {u^2}} }}\frac{{du}}{{dx}}.{\text{ let }}u = \ln x \cr & f'\left( x \right) = \left( {\frac{1}{{\sqrt {1 - {{\left( {\ln x} \right)}^2}} }}} \right)\frac{d}{{dx}}\left[ {\ln x} \right] \cr & f'\left( x \right) = \left( {\frac{1}{{\sqrt {1 - {{\left( {\ln x} \right)}^2}} }}} \right)\left( {\frac{1}{x}} \right) \cr & {\text{simplifying}} \cr & f'\left( x \right) = \frac{1}{{x\sqrt {1 - {{\ln }^2}x} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.